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INTRODUCTION 

Object and Scope 

The unprecedented expansion of major expressway 

systems makes imperative the development and use of adequate 

methods for evaluation, design and construction control of 

flexible pavement systems. The problem to be solved by 

the engineer in highway design or airport construction deals 

primarily with layered soil deposits. In foundation 

engineering, serious problems are encountered, where a 

soft compressible clay layer is sandwiched at some depth 

between an upper layer of sand and underlying layer of 

sand or rock. Whether the surface layer is stronger or 

weaker than the underlying layer, sound foundation design 

of most important structures in civil engineering deals 

with the evaluation of stresses and displacements in 

multi-layered systems. 

This investigation was undertaken to provide a general 

analysis of stresses and displacements of a multi-layered 

system for the engineer. The analysis is intended as a 

useful tool which can be directly applied to the analysis 

of actual conditions encountered in layered soil struc

tures, Numerical evaluation of these quantities for cer

tain cases is given in the form of influence curves for the 

solution of practical problems. 
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Review of Literature 

An analysis of the stresses and displacements in a 

homogeneous, isotropic, elastic, semi-infinite media sub

jected to a vertical point load was first given by 

Boussinesq in 1885 (1). The stress function developed 

strictly satisfies the boundary conditions. The Boussinesq 

equations are given in a general form so that any value of 

Poisson's ratios can be substituted in them. But it is 

interesting to note that the vertical stress is indepen

dent of Poisson's ratio. In Boussinesq's work and in all 

the work done up to the present time the unit weight of 

the elastic material is assumed to be zero, so that the 

computations furnish only the stresses due to the surface 

loads. Therefore, to obtain the total stresses in an 

elastic material with a unit weight y, produced by the 

surface loads and the weight of the elastic material, it 

is necessary to add the stresses due to the loads to those 

produced by the weight of the material. These stresses are 

= ZY 

CTJ, = CTQ = KQ ZY 

Trz = 0 

where , a^, CTQ are the vertical, radial and circumferen

tial stresses at depth z due to the weight of the material and 



www.manaraa.com

3 

KQ is the coefficient of earth pressure at rest for the 

lateral earth pressure in the semi-infinite solid. 

As quoted by Love (2), Cerruti derived equations for 

the stresses due to a horizontal point load acting on a 

horizontal surface which are not as simple as Boussinesq's 

equations. The computation of stresses due to a vertical 

and a horizontal force acting at a point beneath a hori

zontal surface derived by Mindlin (3) in 1936 are still 

more cumbersome. In order to use these equations they 

must be simplified at the expense of accuracy. Quoting 

from Terzaghi (4, p, 375) '  

"With increasing depth below the surface 
the state of stress represented by Mindlin's 
equations approaches that which is produced 
by a force acting at a point in the interior 
of an infinite solid. The corresponding 
stress equations have been derived by Kelvin 
(about 1850), Introducing the special value 
H = 0,5 (Poisson's ratio for incompressible 
elastic solids) into his equations one finds 
that the stresses produced by the point load 
Q, applied at a given point within an infinite 
solid are equal to one half of the stresses 
acting at the same point in a semi-infinite 
solid whose plane surface passes through the 
point of application of Q at a right angle to 
the direction of Q,, Hence one obtains these 
stresses by dividing the stresses determined 
by Boussinesq's equations by two provided 
M = 0,5." 

The equations for stresses in a semi-infinite media 

under infinite line load is obtained by integration of 

Boussinesq's stress equations. Since this is a problem 

of plain strain these stresses are independent of Poisson's 
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ratio. Since in a perfectly elastic medium superposition 

of stresses due to different loads is valid, an infinite 

strip load can be considered as consisting of an infinite 

number of discreet point loads qdA. Using Boussinesq's 

equations as a starting point and integrating over the 

loaded area, stresses under infinite strip loads can also 

be obtained. Newmark obtained influence charts for 

stresses (5) and displacements (6) under surcharges cover

ing rectangular areas, Foster and Ahlvin presented charts 

(7) for computing the influences due to circular loads. 

Different surcharges resembling railroad embankments, which 

are infinite strips with inclined slopes have also been 

analyzed. Gray (8) has compiled the equations for normal 

stresses under the weight of these surcharges on hori

zontal sections. He also gives a valuable list of refer

ences to the original publications. Tables and charts 

for these stresses have been prepared by Jergenson (9). 

All the above theories were developed with an assump

tion of perfect homogeneity and isotropy of the semi-

infinite solid with respect to its elastic properties, 

although this condition seldom exists in nature. The most 

common deviations from the ideal state of elastic isotropy 

and homogeneity are due to the stratifications or lamina

tions which are characteristic of all sedimentary deposits 

or due to a rapid decrease of compressibility with depth. 
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which is typical of sandy soils. The average coefficient 

of permeability when measured parallel to the planes of 

stratification is greater than the coefficient of perme

ability normal to these planes for stratified soils. The 

ideal substitute for such a mass of soil with thin bedding 

planes is a semi-infinite, homogeneous but orthotropic 

elastic solid whose modulus of elasticity has a constant 

value (Ej^) in every horizontal direction and a smaller 

value (Ey) in the vertical direction. Assuming that the 

ratio E^/Ey is equal to an empirical constant "n" Wolf (10) 

computed the stresses produced by a point load and by a 

flexible strip load of infinite length. It can be seen that 

the stress decreases much more rapidly with depth for high 

values of "n" than it does for low values. The curves are 

identical with those of Boussinesq in which "n" equals one, 

Westergaard (11) investigated the influence of lamina

tions on the distribution of stresses in a different way. 

He assumed that the semi-infinite solid is reinforced by 

perfectly flexible horizontal membranes, which completely 

prevent any deformation in a horizontal direction without 

interfering with deformations in a vertical direction. If 

for the material located between the membranes Poisson's 

ratio is assumed to be zero, the vertical stress curve 

falls between the limiting cases of n = 1 and GO repre

sented by the ideal cases of Boussinesq and of Wolf con

sidering the modulus of elasticity in the horizontal 
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direction as infinite. Another important deviation from 

Boussinesq's ideal elastic solid is a decrease in compres

sibility with increasing depth which is a development 

typical in cohesionless sands. For linearly elastic 

materials the vertical strain is independent of initial 

hydrostatic pressure, whereas for sands the strain due to 

the load decreases with increasing hydrostatic pressure. 

In a sand stratum the sand is under the influence of an 

hydrostatic pressure, due to the weight of the sand, the 

intensity of which increases with the depth below the 

surface. The strain produced by a given intensity of 

vertical stress in the sand decreases with increasing depth 

below the surface. In order to take this property of 

sands into account without losing the simplicity resulting 

from assuming the validity of the law of superpositions, 

it is assumed that the sand strictly obeys Hooke's law 

and that the modulus of elasticity of the sand increases 

with depth according to a definite law. In other words 

sand is assumed to be perfectly elastic and isotropic in 

every horizontal direction but elastically nonhomogeneous 

in a vertical direction, Griffith (12) proposed a semi-

empirical modification in terms of a "concentration index" 

to Boussinesq's equation for taking care of the nonhomo

geneous nature of sand. 

In many locations, layers of naturally occurring soils 
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are of finite depth and rest on comparatively rigid "bases. 

The distribution of pressure in such masses can be computed 

using either of the following assumptions: (a) neither 

friction nor adhesion exists between the elastic layer and 

the base or (b) perfect adhesion exists between the layer 

and the base. The equations for the pressures produced by 

a point load on a layer with a frictionless base were 

developed by Melan (13) and those for adhesive base were 

developed by Biot (l4). The computation of pressures due 

to line loads were found for the frictionless case by Melan 

(13) and for the adhesive case by Maguerre (15)» Melan 

estimated that the greatest vertical stress on the rigid 

base occurs under the load, and this value for the fric-

tionaless case is 71 percent higher than that of semi-

infinite medium for point load. For adhesive assumptions 

it is 44 percent higher according to Marguerre, Stresses 

on the rigid base under the line loads are 56 and 28 percent 

higher than those at the same depth in homogeneous semi-

infinite solids for frictionless and adhesive assumptions 

respectively. 

The rigorous computation of the intensity and distri

bution of the vertical stress inside an elastic layer under 

a uniformly distributed load is more difficult, Cummings 

(16) solved this problem by obtaining the stress equation 

for points under the center line of the loaded area, and 

evaluating the stress at other points on the adhesive base 

by assuming that the shape of the stress curves for this 
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case is similar to those that represent the distribution of 

normal stresses on horizontal sections through semi-infinite 

masses acted upon by the same loads. 

In the nineteen forties Burmister (17, 18) formulated 

the general solution for a system having two or three 

layers for the case of axial symmetry, and gave numerical 

data for vertical displacements at the surface of a two-

layer system subjected to a uniformly distributed load over 

a circular area. Corresponding data for stresses along the 

axis of symmetry have been published, by Fox (19) and some 

results for a three-layer system by Acum and Pox (20). 

All the work on multi-layer systems has been accomplished 

by assuming perfectly elastic, homogeneous and isotropic 

layers and even these idealized conditions give rise to 

rather cumbersome equations. The assumption made for the 

interface is that there is either no friction between layers 

or that there is perfect adhesion between the layers. 

Some experimental work in this field is now being done 

by the use of mathematical analogs and photoelastic models. 

But problems in three dimensions are difficult to solve by 

these methods due to the inherent two dimensional natures 

of the models. Field data is also being collected and com

pared with theoretical values but the validity of the 

theory cannot be truly evaluated since the field data 

depend on non-ideal materials. The use of pressure cells 

greatly alters the stresses and strains in the soil by 
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virtue of volume displacement of the soil by the cell and 

the difference in properties of the soil and the cell. 

The Present Investigation 

This investigation deals with the analysis of a semi-

infinite layered elastic medium subject to axially symmetri

cal static forces at the surface. The stresses due to the 

body forces are not considered since they can be added 

separately. The theory is first developed for an arbitrary 

number of horizontal layers. The material in any one layer 

is assumed to be homogeneous, isotropic and linearly elas

tic, The geometry of individual layers and the physical 

properties of the material may vary from layer to another 

and the lowest layer is considered to be semi-infinite. 

The problem is solved for the realistic case of 

natural environmental conditions which dictate the exist

ence of friction at the interface. The conditions assumed 

for the problem are different than those assumed in exist

ing solutions and are based on the performance of pavements. 

Experience has shown that slippage occurs between elements 

of a pavement. 

A flexible pavement consists of a wearing surface, 

base course, subbase and compacted subgrade, A layered 

pavement system is inherently a prestressed structure. It 

is constructed in sequence by preconditioning each layer. 
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The subgrade is first prepared by heavy rolling, a sub-

base layer is then placed and compacted on the subgrade. 

The subgrade layer is now effectively confined and re

strained at the interface. Then a base course and a wear

ing surface is placed above them. It is well known that 

much of the time the wearing course does not bind well to 

the base because the base course is not primed or it is 

exceedingly dirty. In such cases slipping occurs causing 

defects called shoving (21), These problems are also due 

to the horizontal movement of the base course over the 

subbase. To avoid the effects due to poor binding, wire 

meshes are sometimes used at the interface. Perfect 

mechanical bonding of the subbase and subgrade is diffi

cult to attain and even if obtained during construction 

the adhesion at the interface is bound to be reduced during 

the life of the pavement due to repeated loads, climatic 

conditions, moisture changes and other factors, Burmister 

in his latest work (22) states: 

"However it is believed that the principal 
reason for the poor performances of the 6-inch 
base generally is that a single 6-inch base 
cannot be compacted properly by usual construc
tion methods on a relatively poor and hence 
yielding subgrade, due to excessive 'weaving' 
of the subgrade under the rolling action. 
Therefore, due to yielding, the essential 'key
ing and mechanical bonding and prestressing' of 
the base course material could not be attained." 
"The six strength values below average - 6(8,000-
11,000-14,000) in sections M, R and 0 represents 
very poor subbase strength properties and are 
evidence of poor shear deformation characteristics 
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due to inadequate mechanical bonding, keying, 
and prestressing of the subbase material during 
construction." 

It is therefore more reasonable to assume that there is 

relative displacement in the horizontal direction and that 

friction exists at all interfaces than to assume either 

frictionless sliding of one layer over the other or com

plete welding and adhesion of layers as done by all. previous 

investigators. 

In the design of pavements, accurate estimation of 

design loads is just as important as accurate estimation 

of stresses under those loads. It is known that the dis

tribution of pressure under a tire, although generally 

considered uniform, is greatest on the center line of the 

tire imprint and becomes zero at the edges which can be 

seen by the intensity of imprint at the center and edges. 

Very little work has been done in this field on truck 

tires, but Lawton's graphs (23) of contact pressure versus 

distance from center of load indicate that the contact 

pressure distribution is approximately a parabola at or 

below the rated tire load. When overloaded the tire 

tread tends to buckle, and the pressure pattern approaches 

one of uniform distribution. 

The analysis of this investigation therefore assumes 

a multi-layered system, consisting of homogeneous and iso

tropic layers with physical properties that differ from 
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layer to layer. The system is subjected to parabolic dis

tribution of pressure on a circular surface area. The 

interface conditions considered are continuity of vertical 

stress and displacements and continuity of shear stress 

across the interface. The shear stress is taken to be 

proportional to the relative displacement at the interface, 

which is true for silty and sandy soils. This relation 

between shear stress and relative displacement at the 

interface has been experimentally verified by Terzaghi and 

Peck (24). 

Numerical values of vertical stresses and displace

ments, for direct use of the engineer, have been computed 

by a high speed electronic computer, "I.B.M. 7074", for 

a four-layered medium, both for a gravel subgrade and a 

sandy subgrade. The elastic constants for the pavement 

materials and the subgrades have been taken from Nijboer 

(25). 

The present computation program is set up in such a 

way that the stresses and displacements can be evaluated 

for any combination of elastic constants and physical pro

perties of the pavement layer, different proportionality 

constants between the shear stress and relative displace

ment at different interfaces, and any parabolic shape of 

the distribution of contact pressure on the surface of the 

top layer. The extent to which these computed effects 



www.manaraa.com

13 

approximate actual effects depends entirely on how closely 

the conditions of actuality conform to those assumed in 

this analysis. The most unreliable portion of the analysis 

lies in the dependability of the interfacial shear-

displacement data. It is hoped that improved estimates 

of the relationship can be experimentally determined. 

Stresses and displacements can then be evaluated for any 

situation in question by use of the program used for this 

analysis. 
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ANALYSIS OF THE PROBLEM 

Statement of the Problem 

Highways are constructed in a series of layers of 

different materials in order to distribute high surface 

stresses to relatively low bearing subgrades. Generally 

the highest quality materials are located near the sur

face, The load carrying capacity of such a highway is 

dependent upon the load-distributing characteristics of 

the layered system. In order to create a rational economic 

design of a layered pavement system it is necessary to 

understand the load-distributing characteristics of the 

system. Most pavements consist of a surface course, a 

base course, a subbase course and a subgrade. The thick

ness of layers, types of materials and other variables 

offer an infinite number of possible combinations. Several 

simplifying assumptions must be made in order to arrive at 

a theoretical mathematical description of the stresses 

induced in the components of a highway by tire loads on the 

surface. Under such idealized assumptions a highway pave

ment can be represented by a layered system as described 

below. 

Consider the layered system shown in Figure 1, It 

consists of a number of horizontal layers of uniform thick

ness and infinite extent in the horizontal plane. Each 
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Figure 1, The layered system 
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layer is assumed to be homogeneous, isotropic and linearly 

elastic. The thickness of the several layers and their 

elastic properties are different. The lower layer is 

assumed to extend to infinity in the horizontal and verti

cal directions. The surface forces representing the tire 

contact pressure are considered to be strictly axially 

symmetric. The forces caused by gravity have not been 

considered. 

Cylindrical co-ordinates (r, 9, z) are used because of 

the axially symmetric nature of the system in question. 

The origin is located at the surface of the upper layer 

and the z axis coincides with the line of symmetry and is 

positive downward. The solution of the problem is based 

on the linear theory of elasticity. 

The general method of analysis essentially involves 

the determination of a stress function for each layer. 

The stresses and displacements for each layer are expressed 

in terms of its stress function, which satisfies the bound

ary conditions of the particular layer. The layered system 

is subjected to boundary conditions at the upper layer and 

infinity as well as at all interfaces. 

It has been found to be most convenient to substitute 

the compatibility equations, written only in terms of the 

strain components, into the equilibrium equations and 

determine a function which satisfies the resulting differ

ential equation and the assumed boundary conditions. The 
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stresses and displacements can then be written in terms 

of this function. 

Development of the Problem 

Stress-strain relations 

In order to develop the problem in cylindrical co

ordinates, we refer to an. element with displacements as 

indicated in Figure 2, Due to axial symmetry, no dis

placements in the 0 direction are assumed. There are 

three normal strains , Gg and and three shearing 

strains Yr0 ' Y0z ^ndYgj-» Considering first the displace

ment u in the r direction, from Figure 2(a) we obtain 

It can also be seen that a pure radial displacement causes 

a strain in the 0 direction, since the fibers of the element 

have elongated in the 0 direction. The length of fiber ab 

was originally rd0; but, after the radial displacement u 

has taken place, the fiber is in the position of a'b' and 

the new length is (r+u)d0. The tangential strain due to 

this radial displacement is, therefore. 

dr 
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The normal strain in the axial or z direction is given by 

3w 
= z = FE 

as in the case of the rectangular co-ordinate system. Since 

it is assumed that there are no tangential displacements 

and that all quantities are independent of Ô the two shear

ing strains Y9r and YBZ are zero. From Figure 2(c) we 

obtain Yj-z» 

Yrz = + ,(au/ar)ar 
dz(l+ôu/âz (1+ôu/ôr)dr 

^ ÔU ÔW 
Yrz = FE + FF 

Therefore, the six components of strain in cylindrical co

ordinates with (u, o, w) displacements representing axial 

symmetry are 

( 1 )  

Go = -

Y8z = 0 

Y0r = 0 

Vr. = H + If 
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From Hooke's law, limiting the discussion to iso

tropic "bodies, the stress-strain relations can be written 

as 

G V» = 

Gq = 

f [^r - V (^e+^z) 

O0 - V (CJJ.+O2) 

G 7: = az - V (ag+cr ) 

^0z = ° 

Yer = 0 

Yrz = ^rz 

(3) 

(4) 

where E and v are the modulus of elasticity and Poisson's 

ratio respectively. 

By algebraic manipulation. Equations 3 and 4 can also 

be written as 

Oy, = \ (Sj, + G0 + Gg) + 2^6] 

CTO = \ (e_ + Go + G^) + aue. (5) 

a „  =  X  (Gy. + Go + e„) + 2ue, 

Toz = 0 

""er = 0 ( 6 )  
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where X and i_t are Lame's constants, and their values are 

Equilibrium equations 

The distribution of stresses in a solid of revolution 

deformed symmetrically with respect to the axis of revolu

tion is shown in Figure 3. The state of stress at any 

point of the solid is uniquely specified by four components 

of stress 09, and If we consider the total 

force in the radial direction, we must take into account 

the fact that the stress components ag on each face of the 

element give rise to a force -agdSdr dz in the r direction 

as shown in Figure 3b. We therefore obtain the equilibrium 

condition 

•i Ev 
= (l+v)(l_2v) 

and E 
" 2 (1+v) 

Assuming that there are no body forces present and that the 

element, which is centered at the point (r, 6, z) has the 

dimensions (dr, rd9, dz), in the limit as dr, d0 and dz 
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Figure 3. Stresses acting on an element of a solid 
of revolution 
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approach zero, the equation of equilibrium becomes 

+ = 0 (7) 

Similarly, if we equate the total force in the z direction 

to zero, the second equation of equilibrium is obtained. 

+ % + (8) 

Compatibility equations 

Since the derivation of the compatibility equations 

in cylindrical co-ordinates is very cumbersome, the equa

tions will be derived in cartesian co-ordinates and then 

transformed into cylindrical co-ordinates. 

In rectangular co-ordinates the stress-strain rela

tions for a displacement vector (u^, v», w^.) are given as 

^ 9X 

^ 
az 

Su av 

vyz = (10) 
9z 9y 

SUy ÔW 
Yzx = —- + —-

9z 9x 
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where e^, Sy, are the normal strains and y^y» Yyg, 

Yzx the shear strains. 

Compatibility conditions are relations obtained by 

eliminating displacements from relations between displace

ments and strains. They express the conditions necessary 

and sufficient for the determination of the displacements 

from strains except for rigid body motion. The following 

compatibility equations are obtained from Equations 9 and 

10 

a ex a ey a^Yxy 
2 + 2 = 

ay ax axay 

a^ey a^ez aZyyz 

az^ 
+ 

ay^ ayaz 

a^ez 

ax^ 
+ 

a^ex 

az^ 

a^yzx 

SzBx 

(11) 

2 ( Syyz + 3YXZ Syxy) 
ByBz - 3% ^ ax ay az 

2 ^ (ÈlZE _ ayxz + àm) (12) 
SxSz By a% By b z  

2 
o a ez a fSyyz . ayxz ayxy> 
 ̂ bISy  =  ̂ + -57 

To transform these compatibility equations (expressed 

in terms of strains) to equations expressed in terms of 

stresses we substitute the stress-strain relations into 
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the above equations. The stress-strain equations in 

cartesian co-ordinates are 

P J-X = F (1 + v) - V$ 1 
— r-

= F 

(1 + V) CTy - J 

(1 + v) a- - v$ 

(13) 

Yxy 

Yyz 

Yzx 

2 Txy 
E 

2 .ll Tyz 

2 ) TZX 
E 

(14) 

where $ = a„ + cr^ + CT„. 
y ^ 

Substituting , Gy and y^y iri terms of stresses in 

the first compatibility equation we obtain 

9y ÔX 

, . v  = 2(1+^) % (15) 

Ô X  b y  

Equation 15 can be simplified further by making use of 

equilibrium equations which, in cartesian co-ordinates, 

when no body forces are considered, can be written as 
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âryz 

ÂY 
!2Z 
ÂZ 

3TXZ 

9x 

ÔTXY 

3X 
!!y 
BY 

ôTyz 

ÂZ 
( 1 6 )  

âTxy 

5Y 3X 

9TXZ 

ôz 

Differentiating the second equation with respect to y and 

the third with respect to z and adding we get 

P 3 TXY 
AXAY = 

A^^X A^OY 9 /^TYZ 9TXZ 
r2 ~ 5y2 az 3y + ax AX' 

(17) 

Substituting for again from Equation l6, Equation 17 

becomes 

,2CT 

AX' 

2a 
Z _ 

AY' 

AZCZ (18)  

Equation 15 can now be simplified to 

(1 + V)(V2* _ _ ÀF*) _ V CVF* - L2*) = 0 

(19) 
or 

- V^^Z - ^ (V^C^Z) = 0 
az 

where the operator is used to represent (-^-^ + + -^-^), 
?x ay az 
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Equations similar to 19 can be written for each of the three 

Equations 11 which when added become 

(1 _ v) = 0 

or 

= 0 

Hence Equation 19 can be further simplified to 

2 
(1 + v) V CTg + A = 0 (20) 

ÔZ 

Using similar methods, the three strain equations of com

patibility (11) can be transformed to the three stress 

equations of compatibility, as given below 

(1 + V) = 0 

(1 + VIXYZO ^ A 
3X2 

= 0 (21) 

(1 + V)V^% + = 0 

To transform Equations 12 substitute values for Y^yj Yy^, 

Ygx and from 13 and l4. This gives us 

(l+v) . V 9^ 
ÂYÂ: ÂYÂZ 

= (1+v) 
^2T .2T 2T 
9 yz 9 xz 9 xy 

9x^ 9x9y 9x9z 
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Values of 
xz _ ^ - and ——5^ are obtained by differenti-

3X3Y 9X3Z 

ating the first equation of 16 with respect to y and the 

second with respect to z respectively. Substituting these 

values in the above equation we get 

- V 
&Y%Z 

= (l+v) YZ YZ 

9X' SY' ÔZÂY 

34 
ZZ _ Z 

ÂZ' &Y3Z 

(L+v) ̂  - V 
dyôz âyôz 

= (l+v) - V T yz 

(l+v) + 
2 

A # 
9yô z 

= 0 

starting from the other two compatibility equations of 12 

we can similarly derive two more compatibility equations 

in terms of stress. So the three equations are 

^2, 

V V = 0  (22a) 

(l+v) 
^2$ 

XY + A3CBY 
= 0 (22b) 

(l+v) + 
9x9 z 

= 0 (22c) 

Equations 21 and 22  represent the six equations of 

compatibility, called Beltrami-Michell equations. 
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Compatibility equations in cylindrical co-ordinates 

The relationships between normal and shear stresses in 

cartesian co-ordinates and cylindrical co-ordinates are 

first obtained because these are required for the trans

formation of compatibility equations. Since the z-axis 

is identical in both systems it is sufficient to use the 

two dimensional diagram given in Pig-ure 4. Knowing the 

stress components at any point *0', the stress 

acting in any direction r can be calculated by the equa

tions of statics. If 0 is the angle between r and x, 

taking a small element OCB whose depth in the z-direction 

is unity, the components of normal and shear stresses 

acting on OC and OB can be written as 

Ux BC cos 0 and a EC sin 0 

TYX EC cos 0 and T^Y BC sin 0 

respectively. Adding the forces, and noting that Ty^ = 

the equilibrium condition gives 

- <^x cos^ 0 + CTy sin^ 0 + 2?% sin 0 cos 0 

and 

Tj.0 = T̂ y (coŝ G - sin̂ O) + (cry _ â ) sin 0 cos 0 
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Y 

<7, 

Figure'4. Stresses acting on an element 
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But for the problem under consideration = 0. There

f o r e  T ^ y  ( c o s ^ 0  -  s i n ^ G )  +  ( ( 7 y  -  a ^ )  s i n  6  c o s  0 = 0  ( 2 1 )  

which gives 

CTj, = cr^ cos^G + a sin^G + -Cy) ̂  ^ (24) 
^ X cos^G - sin^0 

Knowing cry, T^y we can also find the stresses cjq and 

T0J, by using the above method. Since the angle that CTq 

makes with the x axis is (0+90°) and TQ^, is zero, substi

tution of(0+90°) for 0 in Equation 24 gives 

oq = a sin^0 + cry cos^0 - (a -CT ) 2 sin^0 cos^0 (29) 
^ ^ COS2« - SIN^E ^ 

Multiplying both sides of Equations 24 and 25 by (cos^9 

sin^0) we obtain 

cTjo (cos^0 - sin^G) = cos^G - a» sin^E 

(70 (003^0 - sin^0) = - sin^0 + cr cos^( 

Solving for cr^ and a y from the above equations we have 

P P 
CTx = cTp COS 0 + cTg sin 0 

( 2 6 )  
CTY = CT^ SIN20 + QG COS^0 
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By substituting Equations 26 in 23 we obtain 

(CY-OG ) (SIN^F Tjjy (cos^G - sin^0) + sin 8 cos f 

- cos^9) =0 

or 

Tyy = (Cj,—cTg ) sin 9 COS 0 = (cr^—cTg ) sin 2 0 (27) 

The following equations are found useful in changing 

from rectangular to cylindrical co-ordinates: 

r^ = + y2 0 = arc tan ̂  z = z 

— = — z= cos 9, ^ ̂  = sin 0 (28) 
9x r dy r 

90 y sin 0 50 x cos 
^ ± — ^ =^"2 = — 

The chain rule of different iation states that if 

§ = f(r, 9) 

then 

5§ _ 3# 9r Ô0 
9x ~ 9r Fx F0 ÔX 

Therefore from Equations 28 

|i = |l cos e -i|| sin e (29) 
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. (cos e ̂  ^)(cos e |i - If, 

9^^ 2a o sin 8 cos 8 ̂  3# sin^O ^ cos e - 2 + ̂  ̂  
ÔR 

+ 2 sin 6 cos 6 ^ 5^$ sin^G (30) 
ÂÏÏ :3 ^ 902 "1% 

But since CTj,, CTQ and are independent of 9 in a problem 

of axial symmetry ̂  = 0 which gives 
o B 

à!» = cos2e + (31) 
ÂR 

It can be shown by the preceding process that 

0 . (sin e ̂  + 2£̂ )̂(sl. 0 If + ̂ .||) 

9^^ „A^2a . o sin 0 cos 0 3^# , 3$ cos^0 
= ^^2 SIN 8 + 2 F ÂPÂE ^ FF -"T"" 

^ sin 8 cos 9 cos^G 
- 38 R2 + R2 

AZ* 
Adding this equation, Equation 30 and we get the im

portant result 

2̂. aZ* a2$ a2$ â s i a$ i a2$ â s = (32' 
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The transformation of the stress equations of compatibility 

from cartesian co-ordinates to cylindrical co-ordinates can 

now be made. 

Using the operator of Equation 32 on Equation 26 

2 
\7 (-̂ 4, + - ̂  + + -̂ 4̂ )(cr„ coŝ e + CTn sin̂ 0) 

BrZ r Br âz? 

(-~ + — ̂  + -~)(AJ. cos^6 + CTQ sin^G) 

sin 0 cos 0 (CTj,-ag) (33) 

If $ is the sum of three normal components of stress at 

any point then 

or from Equation 26 

S = CTJ, 4- 00 + CT 2 

Substituting Equations 33 and 31 in 21 we obtain 

2 , . ^ ,2 
/ O 1 Â 9^ > 2 / \ 19 
(;;2 + F ÂP + -;2 (CR-^E) + L+V GJ,2 

COS^G 

+ ( 
+ 7 '"R-E' SIN^ 6=0 

This equation is valid for all values of 9 since we have 

axial symmetry. The above equation is satisfied for all 
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values of 0 if and only if 

= 0 (34) 

and 

F* = o (35) 

If we substitute for à£i. and V^or in the third equation of 
AYZ y 

21 we again get the same equations as 34 and 35. The first 

equation of 21 remains unchanged from cartesian to cylin

drical co-ordinates since the independent variable is z in 

both cases. To transform the compatibility Equations 22 

we recall Equations 6, and because 0 is the angle between 

r and the x axis we have u cos 9 = u^, u sin 0 = Vy, w = w^. 

The chain rule of differentiation gives 

If = (̂ ) #) ana # = (̂ ) (|f) 

Using these equations with Equations 6 and 28, can 

be written as 

9z 9x cos 

TRZ = M (IX + Ilz) 
9z ôy sin 9 
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Referring to Equations 10 and using the stress-strain rela

tions in cartesian co-ordinates 

"^RZ - ̂ XZ (^OS 8 ̂ - ̂ RZ ® 

^RZ - "^YZ (GIN 0 ̂ ^YZ - "^RZ 

^ 1^ 
Because ̂  is identically equal to zero we can write Equa

tion 29 as 

|i = |i cos e 
ox 5r 

which gives 

A2* ^2* 

5X9Z ÂRÔZ 

Also 

cos 9 (36) 

V = V COS 9) = cos 8 V^'^'rz + "^rz (cos 9) 

cos 9 V^'^rz + —^ (cos 9) 

cos 0 (37) 

Using Equations 36 and 37 in Equation 22c we obtain 

V ^ TRZ + = 0 (38) 
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Transformation of Equation 22a to cylindrical co-ordinates 

also results in Equation 38. For the transformation of 

22b we proceed as follows: 

As shown in the preceding transformation 

§& = §§ cos 8 

differentiating with respect to y 

^=^(||ocse)|£ +  ̂ (|i cos9)|i 

By Equation 28 and since = 0 

92$ _ 

SY&X " ARZ 
cos 0 sin 9$ sin 9 cos 

ôr r 

If this relation and Equation 27 are substituted in Equation 

22b 

(1+v)V (ar-ao) sin 28 

SIN 26 _ 1 _^) ̂  ^ 

9R' r ôr' 

wiich is not an independent equation. It can also be 

obtained by subtracting Equation 35 from 3^> because 

•— (crj,-CT0 ) sin 29 

-% (OR-OE) 
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The six compatibility equations in cartesian co

ordinates are therefore reduced to the following four 

compatibility equations in cylindrical co-ordinates: 

^  C R - E )  + $  -  0  

2_ . 1 A 

DZ 

2a (39) 

Derivation of general differential equations 

The development of the differential equation follows 

the method used by Love (26). To express the state of 

stress in the body in terms of the surface forces, it is 

necessary to solve the stress equations of equilibrium (?) 

and (8). The solutions must satisfy the boundary condi

tions of the applied forces and displacements. However, 

the equilibrium conditions of Equations 7 and 8 are not 

sufficient to determine the stresses. 

The stress components are functions of the strain com

ponents and the stress components satisfy the four equations 

of compatibility (39). The equations of compatibility 

together with Equations 7 and 8 are necessary to furnish a 
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sufficient number of equations to determine all stresses. 

The stress components can be eliminated by the strain 

components expressed in terms of displacements by using 

Equations 1 and 2, Then, making a substitution for the 

stresses in the equilibrium equation a single partial 

differential equation can be formed. 

Analogous to the corresponding theory of plane strain 

'RZ . - A 
which when substituted in the equilibrium Equation 8 gives 

- -àpL + ̂  - i  ̂0 (41) 
^^2^2 dz r drag 

Integration of Equation 4l with respect to z, gives 

r tr (42) 
BR R OR 

The equation does not include constants of integration as 

a function of r since y/ includes all such functions» 

Referring to Equation 1 we can write 

3 9 Gj, = ~ (u) = — (r G G )  
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From Equations 3 we get 

Qj, _ V (Ô0 + Gg) = ̂  ( a0 - V (â  + ô ) r [ 
J 

(1+v) (AJ.-aQ) = r ̂  CTQ-V (O^+O^) ( 4 3 )  

It has been found to be expedient to introduce a new func

tion R defined by the equation 

Gr = àff + B (44) 

9z 

substituting Equations 40, 44 and 43 in the equilibrium 

Equation 7 we obtain 

Let Y include any arbitrary function of z such that 

(1+v) + A a. - V (a + o^) = 0 (45) 
AR 3R O I  ^ 

AG = V Y/ - R ( 4 6 )  

Also, let y be independent of 9 such that 
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Adding Equations 42, 44 and 46, we get 

$ = Cy + Og + Gg = (1+v) V 

Since $ is a harmonic function (which can be shown by add

ing the three Equations of 21) we must have 

0 (47) 

Substituting Equation 1 in 3 we get 

U = § - V (OY + GG) (48) 

Using 42, 44 and 46 in the above equation we get 

u .  =  —  § (1+v) R (49) 

Equation 4 gives 

rz = 

Substituting Equations 2 and 40 in the above equation we 

write 

_ _ E f9u , 9w^ 
FrTz 2 (1+v ) az 9r 
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or 

ÈE _ _ 2(l+v) (â£vL) _ ÈU 
âr ~ E ^ârBz^ ôz 

Differentiating Equation 49 with respect to z and substi

tuting 

B  ̂'A» + § '1+ '̂ If <5°' 

Substituting 1 in 3 

3W 1 
AZ - E 

1 
E 

CG-V (CR+CG) 

ÀFR + 1 AV _ V (ÈJ^ + V 
Br^ r 9r ^^2 

1 
'Ê 

V (i+v) 

AZ 

1 
E 

(L_V2) -2 - (i+v) 
è z  (51) 

Equations 50 and 51 are compatible only if 

- § (1+v) _± 
Y 

+ ̂  (l+v) 
9RÂZ' 5Z2 

(l.v) 

V/ 

SRSZ' 
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which resulss from equating the derivative of Equation 

50 with respect to z to the derivative of Equation 51 

with respect to r. Simplification gives 

r -—ë = (1-v) V^y + 
ârâ z 

(52) 

If we introduce a function 0 in 52 such that 

rR = 
À? FF 

(53) 

then 

3^0 

ÂZ 
= (1-v) V Y (54) 

Substituting derivative of R with respect to z, in 50 we 

can write 

R»W 

^ W 
^R 

= (1^) 

= -(^) 

- 2  
Ô2 

9r%z àrôz ârâz 

+ (i+v) 
3r9z E 9r^z 

(55) 

Also, by substituting 54 in 51 

r 
9w 1 (1+v) (1+v) afv 

32% 
(56) 
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Integrating 55 with respect to r we get 

w = = - (1+v) 
E 

9 Y _ ^ 
ÔZ 9 z 

( 5 7 )  

From 53 and we get 

u = _ _ (1-fv) 
E 9r 9r 

(58) 

n can be shown to be a harmonic function by using Equations 

57 and 58. Let 

A = Gy + Gg + Gg = + y + (59) 

then 

A = - (1+v) 
E 

+^2O _ 2 
5Z 

By substituting 5^ in the above we get 

A = (1+v) (l-2v) 

But, adding Equations 3 

A - (ARZV) § 
E 

and by adding Equations 42, 44 and 46 and substituting for ^ 

(1+v) V y 

Therefore 

V -N = 0 
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Letting x' = -y + 0 and substituting 53 in 44 we obtain 

QV, = 2 + 1 3^ + 1 $2 . 
^ Qg2 r ar ̂  r 8r 

X ' - AV _ 22. _ 3^0 

ÔZ^ ÂR^ 

Using 5^ in the above equation and noting v 0 = 0 

= v^x' - - (1-v) = vv^x* - ^—2% 
2.. 

3R2 ÂR'^ 

From Equations 46 and 42 we obtain 

A, . V - & I: _ 1 ÏG = V V^X' - T 3%' 
r Br r Br ï" Br 

and 

V̂ !// - + (1-v) 
ÔZ'^ 

= ( 2—V ) T7 X 
BZ' 

Setting x' = the above three equations for o^, Qq, 

can be written as 

CT VI = 
Bz 

V 
- BR^ 

( 6 0 )  

ERE = 
Bz " - r ̂  (61) 
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= 
9Z 

(2-v) Y Xq - A^XO 

ÔZ' 
(62) 

Substituting these three equations in the equilibrium 

Equation 7 we obtain 

T Â 
RZ = FF (1-v) V^XO - ̂  (63) 

Substituting these values of , ag, and in the 

second equilibrium Equation 8 results in 

= 0 (64) 

Making use of the above values of CTq , in Equations 

1 and 3 we have 

,2^ 
u = - (1+v) ̂  

E BRÂZ 
(65) 

and 

W = _ (1+v) 
E 

(l-2v) V XQ + -7-̂  + 
ZV . O 1 AXO 

9r r 9r 
(66 )  

The problem of determining the distribution of stress 

in a solid of revolution now becomes that of finding a 

solution to the biharmonic Equation 64 and satisfying 

certain boundary conditions. Once the function is 

determined, Equations 60 to 63 will give the stresses 
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and 65 and 66 the displacements. 

For convenience we introduce a new variable "X" 

defined as being equal to KXq, where K is a constant. 

The new variable will not affect the logic developed 

to this point and the form of Equation 64 remains the 

same. The other Equations 60 to 65 become functions 

of X and must satisfy Equation 67 below. 

= 0 (67) 

I f  K  =  2 ( X  =  K X q ,  E q u a t i o n s  60, 61, 62, 63, 65 

and 66 become 

= FP 

CTA = 

OZ = 3% 

9r 

2 
_  2  (X  +  w)  

' ÔR"^ 

XV^X - ̂  (X + U) ̂  ^ 
ôr 

(3X +  4M)  V^X -  2  (X +  u )  

(68 )  

(69) 

(70) 

rz = Ô ( X  +  2 ^ ) " ?  X  _  2  ( X  +  u )  1 - %  
9 Z^ 

(71) 

U £= -
( X  +  m )  

|I 9R9Z 

w = v^x -
^ ^ SZ/AR 

( 7 2 )  

( 7 3 )  
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Boundary and Interface Conditions 

Assumptions 

For the analysis of the layered system it is assumed 

that there is continuous surface of contact between the 

layers at all times, in addition to the assumption of 

isotropy and homogeneity of all layers. 

Since in actual practice the different layers are 

neither welded nor are frictionless at the interfaces, 

it is assumed that there is some relative displacement of 

the different layers and that this is accomplished by over

coming the friction developed at the interfaces. 

Physical significance of the assumptions 

At the upper surface where z is equal to zero the 

shear stress between the tire and the pavement is assumed 

to be zero and the tire contact pressure itself is assumed 

to be a parabolic distribution. 

The equilibrium conditions and the continuity of the 

material through the different layers gives us the continu

ity of the vertical stress cr^, shear stress and verti

cal displacement w through the interface. Based on the 

assumption of the existence of movement and friction at 

the interfaces, and according to the experiments conducted 

by Terzaghi and Peck (24), the shear stress developed 

at the interface is proportional to the movement between 
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the layers. 

As z approaches infinity all stresses and displace

ments approach zero. 

Boundary and interface conditions of the problem 

The above discussion gives us the boundary conditions 

which must be imposed on the partial differential Equation 

67» These conditions are mathematically stated below; 

(1) At z = 0 Tyg = 0 (74) 

(2) At z = 0 a- = p r\2 1 -(1) 
for 
0<r<a (75) 

02 = 0 for a<r<oo 

(3) At any interface (76) 

(4) At any interface = ^j+1 (77) 

(5) At any interface t = t (78) 
^J+1 

(6) At any interface = P (Uj-Uj^^) (79) 

(7) As z ^ 00 X 0 (80) 
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SOLUTION OF THE PROBLEM 

The determination of stresses and displacements now 

lies in finding a solution, satisfying the "boundary condi

tions (7^) to (80), to the biharmonic Equation 67. 

The biharmonic equation of two variables r and z 

can be transformed to an ordinary second order differen

tial equation by means of the Hankel transform. 

The boundary conditions must also be changed to this 

form so that all equations contain derivatives with respect 

to z only, instead of r and z. 

Reduction of the Biharmonic Equation 

The Hankel transform P^(t) is defined so that if a 

function f(r) satisfies certain requisite conditions then 

fn(^) = J Q f(r) J^(tr) r dr 

and 

f(r) = Jn (ir)i dS 

by the inversion theorem. 

Now for the partial differential equation V^X = 0 

in polar co-ordinates we have 
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Multiplying both sides of (81) by jQ(|r) r and integrating 

with respect to r from zero to infinity we obtain 

J " + i ̂  + âlj) r J (îr) dr 
r 5r 

0 

where 

denoting the left hand side by L 

 ̂ Jo'*'-' I7J Jn(âr) dr 

' • Â *  
I- U  JO(SR) 

M ^ OO A 

^ ÂT A? - /  JN(5R) dr 

where 

1 Jo r dr 

Since ̂  is assumed to be finite for all values of r 
9r 

R JO(IR) 
00 

= 0 

Also since ~ JO(R) = - JI(R) 

ôr 
JO(:R) = -  i  

A 
ÂR 

r Jx(ir) = (ir) Jo(ir) 
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Using the above identities L can be further simplified as 

shown below, 

2-Ô  n R C D  

9Z 2 " ̂  o 9r 
- i  J^(3R) dr 

^ + i IrT " xi JlMr) ar 
,^00 'dn 

AZ' 

2 R-

o Br 

=  +  n i  
00 a 

O / ÂP 
r J^(ir) dr 

V' °°7 JgĈ r) r dr 

( 

= ( 

ÂZ^ 
/O°7 R AR 

f) /o" <0 + ? + fj) 

Repeating the operation once again we obtain 

/ °°r j^tgr) dr = 0 = (J^L - 3^)2 y ooy x Jo(Sr) dr 
O ÔZ 

If we use G(|, z) for the zero-order Hankel transform of X 

we get 

G(S, z) = y^^r X Jo(ir) dr (82) 

(JL - F2)2 Z) = 0 
DZ2 
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Solving this differential equation we obtain 

G(S, z) = (A + B z) + (C+Dz) (83) 

The constants A, B, C and D can be determined by imposing 

boundary conditions (74) to (80), 

Hankel Transforms of the Stresses and Displacements 

The boundary conditions 74 to 80 must also be trans

formed by means of the Hankel transform. This requires the 

transformation of the stress and displacement Equations 68 

to 73. 

Vertical stress 

Multiplying both sides by r J^C^r) and integrating with 

respect to r from zero to oo 

(3K+4U) V X - 2(X+P) 

00 

o 
r CT J (§r) dr = (3X+4n) ̂  ® r V^X J_(! r) dr 

^ u o 2 O ^ 

If a2 is the Hankel transform of cr since 

fx Jgtlr) ar = - i^) r X Jj,(ir) dr 

= G 
A ^ 
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CTG. = (3^+^T-I) TT - F^ ^•) G - 2(X+P) ^ q 
ÂZ^ d z ^  

= (X+2U) IZG _ (3X+4W) ̂ 2 AC 
AZ3 AZ 

( 8 4 )  

Therefore by the inversion theorem 

Œ. 
- J o ^ 

(X+2U) À2G _ (3X+4U) #2 ÈLC 
Ô ÔZ' 

JO(SR) DI (85) 

Shear stress 

rz 

r- 00 

= -Â_ (A.+2(-i) V X - 2(\+|j) —\r 
BZ AR 

/o^r TJ,2 J]_(^r) dr = (X+2pJ r JL V^X J]_(|r) dr 

,3, 

rz = (X+2u) 

- 2(X+|i) / ® r -̂ 2̂L J (tr) dr 
AZ^AR ^ 

r J^(lr) V X 
o 

- 2(UM) ̂  /O°°r M dr 
AZ 01 

r J^fgr) 

32 

dr. 

= - (X+2M)2 /o°°v2x r J_(Sr) dr + 2(X+u) - , 
AZ 

OOL 
X Jgdr) dr X r JnfSr) 

o 

= - (A+2p) g (J^? - §2) G + 2(X+p) g afC 
AZ' 

= \1S ÈÎG + (\+3J)2 3G 
a z2 

( 8 6 )  
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By inversion 

= f< TZ ~ J o 

CO ̂ 2 

âz2 
(ir) df (87) 

Vertical displacement 

V, = V^x - iitl O 
M ^ Ô Z" 

/o^r w Jo(|r) dr = rv^X Jo(§r) dr 

- 2L±E r ® r J_(ir) 
^ JO az2 ° 

dr 

w - A+Èi - 1^) r °° r X J (3r) dr 
- H âz2 o 

_È__ y r X J (fr) dr 
3? ° o 

A+E «2) G _ A+Ë 
^ ÔZ' U Bz 

â G A.4-2i-t £ 2o 
32% " LI ^ 

(88) 

By inversion 

w 
ÔZ 

^+2p ^ 2Q. 
M -5 

Jo(3r) dg (89) 

Horizontal displacement 

u = — Ad±L 
la âzôr 
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00 
r u J^(|r) dr = / o ® « r  J , ( f r )  a r  

u = - X-m 
n 

X r J^(ir) 
00 

r J^Cgr) 

= + 4^ ̂ ^ ar 

dr 

Xjju ÔG 
M ^ 

(90) 

By inversion 

u = ̂  /o"|^|2 Ji(fr) as (91) 

For a multi-layered media by Equation 83, the transform of 

X for the jth layer can be written as 

= (A4 + B. z )  e-fz + (C. + D. z) 
J J J .1 

gz 
(92) 

This function must satisfy the boundary conditions 

at the interfaces. Using the approach just developed we 

obtain the transforms of stresses and displacements for a 

jth layer as follows: 

OD 
( o z ^ i  =  S o  Î  

J 9Z3 

(\,+2u,) 
J J BzJi J az 

(93) 

Jo(!r)d?(94) 
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(Trz)j = 3 Gj 

('rrz)j=/^ g 
00 ^ r â^Q 

+ (^j+2Uj)i Gj 

( w )  = _ M±^ #2 G 
9 z2 ki i J 

(95)  

Jl(ir) df (96) 

(97)  

(w)j 
00 9 ̂G ; A, i +2|-i 

,'l — — il " i ̂ 2 

J 
3" G jQ(^r) df (98)  

( Ï Ï ) .  hfil § ̂  
Hj TF 

(99)  

(U)j = (• M, ' 4°°*^ ̂  Jl(tr) « (100) 

The boundary conditions transform to the following form: 

( 1 ) At z = 0 ( T ) 2 = 0 

(2) At z = 0 (a^h = ) 

(101)\ 

'g/i = (102) 

where F{i) is the Hankel transform of = P |^l-(r/a)2 

0<r<0 and Og = 0 for a<r<oo 

for 

(3) At any interface (cfz)j = (^z^j+l 

(4) At any interface (w)j = (w)j^i 

(5) At any interface = (^rz)j+i r z  '  J  

(6) At any interface ("^r^j ~ ̂  

(7) At z -e- CO ^n 

(u)j - (u).^^ 

0 

(103) 

(104) 

(105) 

(106) 

(107) 



www.manaraa.com

59 

where n represents the number of layers. 

Determination of the Constants of Integration 

By applying boundary condition (101) to Equation 95 

we obtain 

aZg. 

az' 
A + (Xi+2u^)g^ = 0 at z = 0 

The function G and its derivatives will now be written in 

terms of A, B, C and D for use in the developments that 

follow. 

Gj = (Aj +B .z)e ^ + (Cj +DjZ)e 

d^G. . g y 
^ = (Aj5_2Bj+Bj3z)*e-^z + (Cji+2Dj-D .zl)|e^^ 

dz ' 

d% . 
= (AlS-ZBi+C;^!+20^)1 

d^G . 
= (-Aj3+3Bj-Bj5z)j2e-4z + (Cj3+3Dj_Djfz)32e3z 

dz 

^^^) = (_A^«+3Bx+Cif-3Dx)l^ 
dz z=0 
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or 

(Aij2_2Bi3 + + 2D^S) + (Xi+2Ui)f2(Ai+Ci) 

(A^t-C^) (A.^-f4-iX^X (B^-D^) (108) 

For the first layer using boundary condition (102) and 

Equation 93, 

P APT 
F(i) = (Xx + 2Pl) ^ - (3^i+4^x)3 at z = 0 

9z' 3z 

.3 = 2f^(Ai_Cx)(Xx+Ux) + 2j2ui(Bi+Di) (109) 

At any interface at a depth H, interface condition (103) 

applied to Equation 93 for any two layers gives 

(\j+2Mj) - (3kj+4Uj)3 = (tj+i+2^j+x) ^ 

- (3kj+x+4Uj+x)3^ —^ 
9 z-

^ J + J H ( X J J ) Aje-fH<3(2Xj+2Pj) + 2Bjf2e-4H 

_ C e2H23(2Xj+2Uj) + 2 Djg^efH 

Aj+ie-3Hf3(2Xj+i+2Uj+i) + 2Bj+x32e-fH 

Uj-^H(Xj +u j) 

M 

Cj^ie'^ ^^(2X j^X+^M j^x) + ZDj+x^'G^ 

j+X+4H(Xj+x+Uj+l] 

(110) 

Uj+l-iH(Xj^l+M._^l) 
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At an interface H, (104) applied to Equation 97 gives 

|2Q. _ ^^".i+1 _ 2 

3z2 ^*0 ^ 

A. e-«H^ (- - Bj e-fHj 

+ C, e^.2 (. . D, efH 
•5 ^ 4 J -5 

J 

'_ 2 + HJ (X.+p.) 
Uj J J 

n 

Aut (- iitiiijii) 
J+i - J Uj+1 

- Bj+1 2 + Hi 

^j+1 
(^j+l+^j+l) 

+ Cj+i efHjZ (_ ^j+l+^j+1) 
Uj+1 

- Dj+i - 2  +  
u j+1 

(^j+l+^j+l) (111) 

By (105) applied to Equation 95 we get 

*-j ̂  = ^j+l ̂ 7%^ + C-j+i+ZUj+i) 
O Z O Z 

Then proceeding as before 

Aig2e-yH(Xj^jj) + Bife"^H [-X, +iH(X, + uj 
J J 

+ Cj42efH(Xj+Uj) + DjfeSH XJ + ̂  H ( X J 4- (U J ) 
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Aj+lf^e-j%(Xj+i+Uj+l)+Bj+i3e-4H -Xj+i+fHfXj+i+Uj+i) 

(112) 

condition (106) applied to Equations 95 and 99 for two 

layers gives 

2 Xj+Hj 3Gj 3Gj+l 

Mj u j+1 9 z 

Ajge-*H (\l+Mi)(2f+ JL) 
^ "j. 

+ Bje-^H -2Xjf+2g2H(\j+Pj) 

- -L (X.+Mj(l-iH) 
M i ^ J -1 

+ CjSe^H (X,+Wi)(2g_ JL) 
_ J J Uj 

+ D.e i l l  2Xij+2ifH(\.+u.) _ JL (X;+Ui)(l + jH) 
J J J j 

3 

j+1 
(^j+l+^j+l)(1-fH) 

Cj+lfe 
fH 

ÏÏI 

+ Dj+iefH 

-. J+-^ ii 

(113) 

For the nth layer using boundary condition (10?) and 

Equation 92 
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(A^+Bn z) e-fz + (Cn+D^ z) e+^z » o as z CO 

This gives 

Cn = 0 (114) 

and 

Dn = 0 (115) 

For a system consisting of n layers vie have (4 n-2) 

constants to be evaluated. The topmost layer gives 2 con

dition equations 108 and 109, and the (n-1) interfaces 

between n layers give 4(n-l) equations similar to 110 to 

113. These conditions furnish sufficient equations to 

solve for Aj, Bj, Cj and Dj. 

Computation Procedure 

The (4n-2) equations were written in the matrix nota

tion in the form QY =S where, Q, is the (kn-2 )(4n-2) 

matrix containing the coefficients of the constants A^, 

Bj, Cj and Dj. is a matrix containing (4n-2) (1) 

the terms Aj, Bj, Cj, D^'s, and S is a (4n-2) (l) matrix 

containing the right hand sides of all the equations. In 

this matrix all terms except one are zero. These matrices 

are presented in the following pages. 
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These matrices were solved to obtain the values of 

the constants Aj, Bj, Cj and Dj, which were used in Equa

tions 94 and 98 to obtain the values of stresses and dis

placements, The equations were integrated over the inter

val 0 to 00 with respect to for different values of z to 

get the effects at different depths. 
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xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

xxxxxx 

[Q] 

Cl 

Dl 

A2 

^2 

^2 

Dj 

B n 

o 

8 2 JqH)' 

0 

0 

0 

0 

0 

0 

Matrix Q, Yq and S for parabolic load conditions, 
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I l) (2) (3) (4) (5) (6) (7) 

0 0 0 - 2 0 0 

3f 0., 0 0 * 1 G 0 

^2 
El 

0 0 
e'fl 

(U 3^H,) 

-a-f", 

(1 + 3^H| ) 52 
E| 

G 

G 
3^e 

E| 

-fHg 
-3fe 
E3 
E| 

0 0 

€"2 
e 

(U3^Hp) ̂2 
E| 

-e 
(1* sfHg) £3 

E| 

0 0 
^3 
E 1 

3f« 

k 
El 

0 0 

-CH3 
e 

(U 3^H ) ii 
^ El 

-f", -f"l 
'3fe 0 0 

(2,3fH,) (24. 3^H, ) 
G 

0 -3^e »3(c 0 G 
^ €"2 

(2v 3CH2) 

-f"2 e 

12 ,zfHg) 

(I) 

12) 

(3) 

(4) 

(5) 

(6) 

(7) 

Table la, Matrix Q, for a four-layered system 



www.manaraa.com

( 8 )  (9) (10) (II) (12) (13) (14) 

0 *3^ 0 0 • 2 0 0 

0 0 0 » 1 0 0 

0 

.fH, 
.3fe 

E2 
E| 

0 (-U3^H|) 

^H| 
e 

{-U3^H,) il 
E| 

0 

0 0 
52 
E| 

E3 
E| 

0 

(Hg 
-e p 

(-1 + 3^H2) 

(1 + 3^83) ̂  
E| 

0 0 

E| 

0 0 (-1 + 3CH3) 

0 

.fH, 
-34 e 

+ fH, 

+ 3f. 0 

-e + fH, 

(-2+ 3 £ H,) (.2+3(H,) 0 

0 0 0 

..("2 

(-Z + SfHg) (-2f 

(I) 

( 2 )  

(3) 

(4) 

(5) 

(6) 

(7) 

Table lb, Matrix Q, for a four-layered system 
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(I) (2) (3) (4) (5) (6) (7) 

e 

(2»3^H3 ) 
0 0 

< H3 
-3^ e 0 • 0 

L2+3fH3) 
(8) 

0 

CH, CH| 
-3(e 

E2 
El 

0 
(2f3^H, ) 

^H| 

(2f3(H,) E2 
El 

0 (9) 

0 0 
^ €"2 

^2 
E| 

-3^ a 
^3 
E| 

0 

("2 
e 

(2»3( Hg) ̂  

-e 

(2t 3^H2) ̂  
(10) 

-

- e 

(-2^3{H3) ̂  
0 0 0 0 

^"3 
e 

(2t3fH3) ̂  
E| 

(il) 

0 ) 
E, 

fcf"! 

/3_L 0 
[|4V'i & II.£H,) 

0 (12) 

•0 0 

F«f"2 

J3J 
E| 

0 

, X,"2 

[f If "2 

-^2(U^H2)JE2 

,f"2 

^  (l+f H2) 
(13) 

e • ̂  ̂3 

4; "31 
0 CI 

F.FH, 
0 

E2 E2 

0 

-03(I*SH )] E3 

(14) 

E3 El 
Table le. Matrix Q for a four-layered system 
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(8) 19) (10) (II) (12) (13) (14) 

0 0 

.3(.f"3 

0 0 

-fH, 
- e 

(2»3fH3) (8) 

E| 

0 0 

-£H, 
e 

(-2f3^H|) 

-fH, 
-e 

(-2 + 3fH,)_E2 
E| 

0 (9) 

• 0 E2 
E| 

0 0 

-^"2 e 

El 

-fH2 
-e 

(-2f3^H2)E3 
E| 

(10) 

0 0 
il 
E| 

11 
E| 

0 0 

-fH3 
e 

(-2t3^H3) E3 
E| 

(II) 

•1 f • 0| ' 
E| 

. -fH| 
-ce 

& 
E, 

0 0 

-fH, 

[•1 •! î'"' 
0,(l-^H|)J 

-£H| 
e 

0, . 
ËJH-CH,) 

0 (12) 

0 «2 
E| 

0 

E| 

0 
e'^"2 

(13) 

0 0 O3 
E, 

0 

^2 

0 
e 

[.£.|.£2H3 

"O3 ('-6"3qE| 

(14) 

E3 
Table Id, Matrix Q for a four-layered system 
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COMPUTER PROGRAM 

Evaluation of Integrals 

The integral expressions of (9^) and (98) represent

ing the stresses and displacements are evaluated numeri

cally, at different depths in the layered medium, by using 

the Gaussian quadrature formula (27) as explained below. 

The numerical evaluation was done by the use of an "I.B.M. 

707^" computer. 

The range of integration is divided into N intervals 

and the s point Gaussian formula is applied to each inter

val. If 

00 
T̂ = /q 1(3) J%(3r) dl 

then I^ can be written as 

N 
Im = s 

k=l 

s 
Z Wi I(i, k) Jn (i, k) 
i=l 

(116) 

where I(i, k) and (i, k) represent the values of I and 

at i^^ subinterval of k^h interval. is the weighting 

coefficient of the Gaussian formula. The inner sum of i 

gives the value of the integral for one interval and the 

outer sum gives the value for the N intervals. 

The intervals were chosen to fall between points where 

the Bessel function that appears in the integral is zero, 

The number of intervals N is infinite since the range of 



www.manaraa.com

68 

integration is from zero to infinity but the numerical 

program uses only a finite number of intervals. The 

integration process is continued until the absolute value 

of the integral in the given interval is less than some 

specified percent of the sum obtained to this point. 

The program was developed for a parabolic distribution 

of load distributed over a circular area. Four layers were 

assumed and Poisson's ratio v for the material was assumed 

to be 1/3. Investigations into the properties of granular 

road .naterials and bituminous materials have shown that 

the Poisson's ratio probably lies between 0,3 and 0.4. (28). 

The vertical stress values and vertical displace

ment values w were evaluated only for the point of symmetry 

since maximum values exist on the line of symmetry. The 

shear stress and the radial displacement u on the line 

of symmetry x are zero. 

The non-dimensional parameters that are to be speci

fied in using the program are the ratios of the thicknesses 

of the different layers to the radius of the loaded area 

and the ratios of elastic moduli of all layers to the elastic 

modulus of the first layer. 

The time required to compute the vertical effects at 

eleven different depths for a four layer system is nearly 

3 minutes. The time of computation depends upon the rela

tive elastic moduli and the ratios of thicknesses of dif

ferent layers. 
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This program can be,used with relatively minor modifi

cations for different types of load patterns and different 

frictional coefficients between layers. 

Outline of the Program 

The computer program is based on the sequence given 

below. 

As described in the previous paragraphs the integra

tion from zero to infinity is evaluated as a double summa

tion, The procedure is explained with reference to the 

case of T, rz • 

N 

' ^ r z  = kEl ^ ^^i '^(i,k) ^1 i=l 

The inner sum is computed as follows : 

1~ Ml 
1, First the limits of the k interval are set. In 

the case of they are the consecutive values for which 

J]^(|r) are zero. But since the value of r for which 

are significant are 1/2, 1 and 2, etc., the consecutive 
a 
zero's of can be used. Choosing the zero's of 

instead of will not have a bad effect on the evalua

tion of Tp2 for r = 1/2 but the accuracy at r = 2 will be 

slightly less. For the vertical effects at r = 0, consecu

tive t's for which JgCt) is zero are used. In both cases 

the first % is taken to be zero. These units of the 
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interval are all obtained from a subroutine of the "Inte

gration Routine" in which the zero's of J^(4) and 

are specified as constants, 

2, The values of i for the i^^ subintervals are 

evaluated by using Gaussian constants. In the present 

case, 6 points are calculated, 

3, Evaluation of 

a. Matrices Q, and S are formed for the first I 

value. It should be noted that Q. was written in a 

slightly different form for the use of the computer, 

b. The matrix is inverted by a standard library 

inversion routine and we get the values of B^, C. and 
J J J 

Dj's for a certain value of j, 

c. All the derivatives of Gj's are formed for 

this % and the corresponding z values using the formula 

given on page 59. 

d. The integrand of given in (96) is formed 

and multiplied by W(i), the weighting constant of the 

Gaussian formula, 

e. Items a, b, c, and d are repeated s times for 

the succeeding i values within the interval and added 

together. This sum is multiplied by dS obtained from the 

Gaussian formula. 

Repeating steps 2, 3a, b, d, c and e, for consecutive 

intervals of J^fSr) and adding we obtain This cycle 
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is repeated until the absolute value of the inner sum or 

the area under the graph of the integrand for the last 

interval is less than a specified percent of the total sum 

of areas obtained from all preceding intervals up to the 

final interval. The specified percent of tolerance in this 

program is one percent, i.e., the area of the last interval 

must be equal to or less than one hundredth of the sum of 

the areas of all the preceding intervals. 

The basic steps are given in the form of a chart shown 

in Figure 5. 
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START 

<»-

•£> 

IS ABSOL( T r z )  

YES 

^ PRINT RESULTS • 

•100 
T r z FORM T rz 

COMPUTE T(i,k) 

INVERT THE MATRIX TO GET 
Aj.  Bj ,  Cj,  Dj FOR THIS f  ( i ,k) 

DETERMINE THE LIMITS OF k 
INTERVAL k =1,2,3 

FROM THE GAUSSIAN FORMULA 
DETERMINE C ( i ,K) i= 1,2,---s 

FORM X W{i)r(i,k) 

FOR ^( i ,K) DETERMINED EVALUATE 
COEFFICIENTS OF SIMULTANEOUS 
EQUATIONS IN THE FORM OF THE 
MATRIX 0 AND S. 

Figure 5. Outline of the computer program 
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RESULTS AND GRAPHS 

Numerical values of normal stresses and vertical dis

placements have been evaluated for the following standard 

pavements: 

Tire imprint radius 8" 9" 12" Tire imprint radius 
(1) (1) (2) (1) (2) 

Surface course thickness 2" 3" 3" 4" 6" 

Base course thickness 6" 6" 9" 8" 12" 

Subbase thickness 12" 18" 12" 

1—
i 

18" 

The effects on the pavements have been evaluated both for a 

silty subgrade and gravel subgrade. The elastic moduli have 

been assumed to be: 5,000,000 psi, 1,000,000 psi, 100,000 

psi and 10,000 psifor surface course, base course, subbase 

and silty subgrade respectively. For gravel subgrade the 

moduli are taken as 5,000,000 psi, 500,000 psi, 100,000 

psi and 500,000 psi for the consecutive layers. The values 

of 3 are assumed to be tan 75° for the first interface and 

tan 85° for the second and third interfaces, since it is 

generally thought that there is less bonding between the 

wearing surface and the base than for lower interfaces. 

The actual stresses at depth z can be obtained by 

entering the graph of the corresponding tire imprint size 

at z/a and multiplying the stress influence coefficient 

by P, The deflection is obtained by multiplying the 

/Pa 
deflection factor by (^), and the units will be the same 

as that of a, since ̂  is dimensionless. 
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Vertical stress influence coefficient 

Tire imprint radius = 8 inches 

= 3.73 Pg = 11*43 ^3 = 11*43 

= 0.25 H2 = 1.00 = 2.30 

= 2" hg = 6" = 12" 

z/a Gravel subgrade Silty subgrade 

0.00 1.000 1.000 

0.06 0.266 0.266 

0.12 0.889 0.888 

0.19 0.814 0.814 

0.25 0.784 0.786 

0.50 0.704 0.620 

0.75 0.529 0.306 

1.00 0.346 0.187 

1.75 0.152 0.186 

2.50 0.195 0.036 

3.50 O.IIP. 0.232 
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VERTICAL STRESS INFLUENCE COEFFICIENT cr^/p 
0.2 0.4 0.6 0.8 1.0 

WEARING SURFACE 

8" RAD. LOAD 
BASE COURSE 

a-2/p VERSUS z/a 

SUB BASE 
COURSE 

LU 2.0 

-- SILTY SUBGRADE 
— GRAVEL SUBGRADE 

SUBGRADE ^ 3.0 

Figure 6, Vertical stress influence coefficient versus z/a 
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Vertical deflection factor w(— x —) 
P a 

Tire inoi'lnt; radius = 8 inches 

Pi = 3.73 32 = 11.43 33 = 11.43 

Hi = 0.25 Hg = 1.00 = 2.50 

hi = 2" hg = 6" h^ = 12" 

z/a Gravel subgrade Silty subgrade 

0.00 16.70 97.28 

0.06 16.67 97.25 

0.12 16.65 97.22 

0.19 16.58 97.09 

0.25 16.44 96.88 

0.50 15.62 96.50 

0.75 14.61 96.25 

1.00 13.79 96.00 

1.75 3.20 90.06 

2.50 2.04 83.84 

3.50 1.80 68.48 
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N| O 1.0 

20 

E, I 
DEFLECTION FACTOR w(-^x-^) 

40 60 80 100 

< 2.0 

(/) 3.0 

WEARING SURFACE 
1 r 

BASE COURSE 
I 8 RAD. LOAD 
' E| I 
I VERSUS 

I 
I 
j H(l)=0.25 h, = 2 

SUB BASE COURSE / H(2)=I.O h2 = 6" 

/  H{3) = 2.5 ^3 = 12'  

SILTY SUBGRADE-

— GRAVEL SUBGRADE 

J I L 

-J 
-0 

Figure 7. Deflection factor versus z/a 
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Vertical stress influence coef f icient, o-^^p 

Tire imprint radius = 9 inches 

= 3.73 P2 = 11.43 33 = 11.43 

= 0.33 Hg = 1.00 = 3.00 

= 3" h2 = 6" = 18" 

z/a Gravel subgrade Silty subgrade 

0.00 1,000 1.000 

0.08 0.896 0.240 

0.17 0.670 0.809 

0.25 0.447 0.681 

0.33 0.352 0.629 

0.55 0.292 0.532 

0.78 0.253 0.382 

1.00 0.223 0.222 

2.00 0.135 0.0811 

3.00 0.063 0.236 

4.00 0.015 0.171 
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VERTICAL STRESS INFLUENCE COEFFICIENT ^ z/P 
0.2 0.4 0.6 0.8 1.0 

WEARING' SURFACE 1 

SUBGRADE 

T 

BASE COURSE 

9"RAD. LOAD 
a 2/p VERSUS z/a 

SUB BASE H(l) = 0.33 h, =3" 
H ( 2 ) = l . 0 0  h 2 = 6 -
H (3) =3.00 h3 = 18" 

SILTY SUBGRADE 
GRAVEL SUBGRADE ~~ 

Figure S, Vertical stress influencé coefficient versus z/a 
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1_ 1 
Vertical deflection factor w(— x —) 

P B 

Tire imprint radius = 9 inches 

3l = 3.73 

= 0.33 

hi = 3" 

P. = 11.43 

Hg = 1.00 

h o  =  6 "  

P. = 11.43 

= 3 .00 

h3 = 18" 

z/a 

0 . 0 0  

0 .08  

0.17 

0 .25  

0.33 

0.55 

0.78 

1.00 

2.00 

3.00 

4.00 

Gravel subgrade 

20.19 

20.18 

20.07 

20.06 

20.04 

20 .00  

19.70 

18.47 

7.91 

2.19 

1.70 

Silty subgrade 

22.05 

82 .00  

81.99 

81.86 

81.62 

81.50 

81.22 

80.06  

75.73 

67.54 

56.29 
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N] O 

(T 
1x1 
H 
LU 

1.0 

< 
CK 

 ̂ 2.0 
Lu 
O 
(/) 
LU 
3 

< 3.0 
> 

DEFLECTION FACTOR w{^x^) 

20 40 60 80 100 

^ ^'WEARING SURFACE 
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Vertical stress influence coefficient 

Tire imprint radius = 9 inches 

Pi = 3.73 92 = 11.43 9] = 11.43 

H-j^ = 0,33 H2 = 1*33 H 2 = 2,66 

hi = 3" h2 = 9" = 12" 

z/a Gravel subgrade Silty subgrade 

0.00 1.000 1.000 

0.08 0.946 0.956 

0.17 0.827 0.8̂ 0 

0.25 0.710 0.767 

0.33 0.660 0.730 

J.66 0.376 0.378 

1.00 0.bi7 0.303 

1.33 0.249, 0.143 

2.00 0.103 0.070 

2.67 0.033 0.028 

3.67 0.012 0.019 
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El 1 ^ 
Vertical deflection factor w(— x —) 

Tire imprint radius = 9 inches 

3i = 3.73 Pg = 11.43 = 11.43 

= 0.33 H2 = 1.33 H.  ̂ 2.66 

hi = 3" hg = 9" = 12" 

z/a Gravel Subgrade Silty subgrade 

0.00 13.91 84.60 

0.08 13.88 84.̂ 8 

0.17 13.%7 84.45 

0.25 13.74 84.44 

0.33 13.60 84.20 

0.66 12.54 84.00 

1.00 11.33 83.0 

1.33 10.45 79.26 

2.00 3.k2 74.07 

2.66 2.28 61.75 

3.67 1.92 
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Figure 11. Deflection, coefficient versus z/a 
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Vertical stress influence coefficient 

Tire imprint radius = 12 inches 

Pi = 3.73 2̂ = P] = 11.43 

= 0.33 H2 = 1.00 = 2.33 

hi = 4" hg = 8" hj  = 16" 

z/a Gravel subgrade Silty subgrade 

0.00 1.000 1.000 

0.08 0.942 0.931 

0.17 0.815 0.781 

0.25 0.630 0.635 

0.33 0.637 0.577 

0.55 0.588 0.472 

0.78 0.465 0.250 

1.00 0.325 0.184 

1.67 0.144 0.143 

2.33 0.042 0.047 

3.33 0.008 0.030 
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Figure 1: Vertical stress influence coefficient versus z/? 
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Vertical deflection factor w(— x —) 
P a 

Tire imprint radius = 12 inches 

3i = 3.73 2̂ = 11.43 33 = 11.43 

Hx = 0.33 Hg = 1.00 H3 = 2.33 

= 4" hg = 8" h = 16" 

z/a Gravel subgrade Silty subgrade 

0.00 15.04 111.56 

0.08 15.01 111.51 

0.17 14.99 111.48 

0.25 14.30 111.33 

0.33 14.72 111.03 

0.55 14.21 111.00 

0.73 13.52 111.00 

1.00 12.92 111.00 

1.67 3.94 105.8 

2.33 2.50 99.45 

3.33 2.07 80.13 
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Figure 13» Deflection factor versus z/a 
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Vertical stress influence coefficient 

Tire imprint radius = 12 inches 

Pi = 3.73 92 = 11.43 9] = 11.43 

Hx = 0,50 Hp = 1.5 = 3«00 

hi = 6" hg = 12" h3 = 18" 

z/a Gravel subgrade Silty subgrade 

0.00 i.oon 1.000 

0.12 0.919 0.918 

0.25 0.745 0.742 

0.37 0.572 0.570 

0.50 0.496 0.438 

0.88 0.465 0.413 

1.21 0.391 0.245 

1.50 0.236 0.128 

2.25 0.0946 0.048 

3.00 0.0415 0.022 

4.00 0.0276 0.016 
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E 
Vertical deflection factor w(—1 x —) 

P a 

Tire imprint radius = 12 inches 

3i = 3.73 Pg = 11-43 03 = 11.43 

= 0,50 Hg = 1.5 Ho = 3.00 

= 6" hg = 12" h3 = 18" 

z Gravel subgrade Silty subgrade 

0.00 11.79 74.43 

0.12 11.74 74.37 

0.25 11.68 74.36 

0.37 11.61 74.20 

0.50 11.41 74.26 

0.88 10.53 74.14 

1.21 9.53 72.66 

1.50 8.93 68.60 

2.25 2.01 65.00 

3.00 1.68 60.00 

4.00 1.63 55.00 
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An Approach to the Design of Flexible Pavements 

The main object of a road structure is to prevent the 

underlying soil from being subjected to excessive loads 

produced by traffic. Excessive loads produce excessive 

deformation of the subgrade which leads to cracking of 

the surface layers which in turn deteriorates the road 

structure due to the entrance of water. Sometimes cracks 

develop at the bottom of a bituminous layer and propagate 

upwards, due to the horizontal stresses and deformations 

at the bottom of layers. Therefore the maximum vertical 

stress in the subgrade and vertical displacement at the 

surface of the road structure are important design criteria. 

The vertical stresses and displacements and maximum hori

zontal stresses and deformations in each layer should be 

kept within safe limits to prevent cracks due to flexture. 

A safe stress for any layer is a function of the 

strength of the material. As yet there is no fundamental 

method of evaluating the true permissible stresses for the 

base materials or for any soil. It is hoped that the 

stress-strain relationships for these materials which are 

being calculated from velocity of propagation measurements 

made in the field by Heukelora and Foster (29) may produce 

values which will closely approach the true permissible 

values of the vertical stresses. Presently a relationship 

between an empirical permissible value and a parameter--the 
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C.B.R. value which represents a measure of the strength or 

quality of the soil, can be taken as a satisfactory measure. 

Design curves relating the C.B.R, value of the soil 

with total thickness of the conventional type pavements 

developed from actual observations on roads are now in use. 

The graphs for heavy traffic (12,000 wheel load, 60 psi) and 

for light load (7,000 lbs wheel load, 60 psi) for 2 to 4 

inches of bituminous surfacing on a base course of granular 

material is given in Figure 2 of Peattie's paper (30). 

These show plots of vertical stresses, existing at the top 

of the subgrade, versus C.B.R. values for some of the high

ways in California, Since these represent highways that 

are performing satisfactorily, the graph represents stresses 

that can be carried safely by subgrades having these C.B.R. 

values. Since these stresses' can be much lower than the 

value the pavement may be able to carry, they represent the 

presumptive values, A modified curve based on further 

analysis is presented by Porter (32). A similar relation

ship connecting the vertical deformation with the C.B.R. 

values of the subgrade can be drawn. These graphs can be 

used for the design. 

Effect of repetitive loads 

Road structures fail not only due to excessive stresses 

under the traffic but also due to fatigue under repeated 
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loads. Pell, McCarthy and Gardner (3I) suggest that the 

principal tensile strain is the critical factor in the 

fatigue of bituminous mixes. It can be seen from a graph 

prepared by Saal and Pell and presented by Peattie (28) 

that there is a linear relationship between the logarithm 

of the tensile strain and the logarithm of the number of 

load applications to failure for sand asphalt specimens 

subjected to uni-directional and bi-directional stresses. 

Similar work of fatigue behavior for specimens containing 

larger sized aggregates subjected to three dimensional 

stresses as they exist in the field is also being done. 

Bituminous mixes take from 60 to 100 Kg/sg cms. without 

immediate failure. Since it has bee noticed that the 

strength decreases to about 75!^ of its original value 

after repeated application of loads, it is safe to assume 

the ultimate tensile strength of an asphaltic mix under 

field conditions is about 65 Kg/sg cms. From laboratory 

work on the stress-strain relationships for granular sub-

grades it has been found that below certain stresses the 

number of load application does not bring about fatigue for 

the material and the vertical stresses in the graph presented 

by Porter (jO), represent these limiting stresses for the 

corresponding C.B.R. values. 

Method of design 

It has been concluded that the critical conditions for 

thickness design are the vertical stress and displacement 
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at the top of the layers and horizontal strain and stress at 

the bottom of the layer. In a four layer structure the 

values E2, and are relatively independent of tempera

ture, but E]_ of the bituminous layer depends considerably 

on time and temperature. The evaluation of stresses and 

strains should be made at the critical conditions of high 

temperature and slow traffic. A design approach for a four 

layer system can be developed on the same lines as has been 

given by Peattie (28) for a three layer system, which is 

discussed below in detail. 

" = " = i 

IC "1 -2 r El 
'̂ 1 = ËJ '̂ 2 = ËJ ''3 = aj 

where a - radius of circular contact area 

h^, h2 and h^ - thickness of the three layers respec

tively. 

E^, Eg, E^ and = elastic modulii of the four layers 

from top to bottom. 

Ranges of these parameters should cover all the combinations 

most likely to occur in actual highway pavements. Inter

mediate values can be interpolated. The numerical data 

available is not considered sufficient for this purpose 

but an example is shown by using extrapolated values from 

the graphs so that, when all combinations of K's, A's and 
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H's are covered, design curves can be made. The design 

method suggested is a trial and error process. First assume 

the layers to be of certain thickness and calculate the 

stresses and strains under design loads. If these values 

are not within the permissible limits the thicknesses are 

adjusted. 

A large range of subgrade stresses ZZp for a certain 

combination of and K2 in a three layer system is repre

sented as shown by Peattie (28) in Figure I6, Similar 

charts can be drawn for surface displacements, horizontal 

stresses and strains. These charts are the same irrespec

tive of tire pressure. But the charts are different for 

different values of K]_ and K^. Now knowing the values of 

C.B.R. for the subgrade and other layers and referring to 

graphs similar to the one due to Saal and Pell, we can 

find permissible stresses and strains. If the ratio of the 

permissible stress to tire pressure is M then all pavements 

represented by A and H below the stress factor M in Figure 

16 are safe. Similar permissible values should be entered 

in the corresponding charts of surface displacements of 

Figure 1?. The horizontal stresses and strains should also 

be checked on similar graphs prepared. The common values 

of A and H marked by x in both figures represent a structure 

where the vertical stress and horizontal strain reach the 

permissible values simultaneously. The structures represented 
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Figure 16. Factor for vertical compressive stress factor 
2Z2 for k^=2 and k2=20 
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by A and H on the right side of point x in Figure l6 reach 

a permissible stress before they reach the permissible 

horizontal strain. The opposite is true of points on the 

left side of point x. The satisfactory values are those 

represented by points that are common to the areas under 

the horizontal lines through x in both Figures 16 and 1?. 

For a four layer system there are many variables and the 

process is tedious but practicable, A chart similar to 

Figure 16 is shown as an example in Figure 18. For each 

set of , K2 and since there are 3 factors f, g, h 

where 

ïi K = h . h ® = a 

the two dimensional nature of charts is a disadvantage 

but by using a trial and error procedure a small number 

of charts should be sufficient for the solution of a wide 

latitude of problems. 
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SUMMARY 

The following general conclusions can be drawn by-

comparing the vertical displacements and normal stresses 

of different pavements. 

The displacement of the pavement on silt  is smaller 

than that of the pavement on gravel at all  depths. This 

may be due to the smaller elastic modulus of silt .  The 

load-deflection factor improves markedly with the increase 

in thicknesses of the pavement layers, causing a decrease 

in the displacement. Improvement in deflection performance 

can be achieved by using high quality materials with higher 

moduli of elasticity and by actual constructional excel

lence in the field to attain full potential strength pro

perties. The deflections are also influenced by the radius 

of the bearing area. For a constant intensity of pressure 

the deflection increases as the t ire imprint increases in 

area. 

While the surface displacement is considerably affected 

by the elastic modulus of the subgrade, the graphs show that 

the stress influence coefficients in the subgrade do not 

change significantly with a change in the elastic modulus 

of the subgrade. The stresses mainly depend on the thick

nesses of the pavement layers and the elastic moduli of 

the pavement layers since a major part of the load is car

ried by the pavement. For comparison the stress influence 
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coefficient curves of Boussinesq and Burmister have been 

plotted on Figure 14. It can be seen that the stress in

fluence coefficients for all cases are lower than that of 

Boussinesq at all depthes, and that for this case they are 

nearly the same as that for a two layer system with E1/E2 = 

10 and = 1*0. 

The stresses and displacements are affected by many 

factors such as the absolute values and ratios of the 

elastic modulii of consecutive layers, the radius of bearing 

area and thicknesses of the different layers of the pave

ment. If road test results are to be extrapolated, it seems 

logical that theoretical rather than empirical relationships 

would provide a better foundation for such extrapolation. 

The best design results will be obtained by evaluating the 

stresses and displacements for certain combinations of the 

above-mentioned factors and extrapolating only within a 

reasonable range. 

Considerable experimental work needs to be done in 

this field before a reliable pavement design procedure can 

be developed from these theoretical values. Precise values 

of the "3" and the elastic moduli! of the layers need to 

be evaluated, horizontal and vertical stress values for 

many different pavement thicknesses should be calculated, 

and model studies to check predicted stress values will be 

invaluable. 
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NOMENCLATURE 

A::, B^, C., D- = Constants of integration for the layer. J J J J 

Ej = Modulus of elasticity of the material in the layer, 

F(I) = Hankel transform of the distribution of tire pressure, 

H = Distance from the upper surface of the layered system 

to an interface divided by the radius of the area of 

load distribution on the surface, 

hj = Thickness of the layer in inches. 

Jq, = Bessel functions of the first kind, order zero and 

one respectively. 

j - Subscript referring to quantities corresponding to the 

layer. 

n = Number of layers in a given system, 

Q, = Coefficient matrix. 

(r, 9, z) = Cylindrical co-ordinates 

S = Coefficient matrix 

s = Number of points in the Gaussian formula. 

(u, o, w) = Displacements of a point in the r, 9, z direc

tions . 

uj, Uj = Radial displacement of the points in the jth layer 

and its Hankel transform respectively. 

W(i) - Weighting coefficients in the Gaussian formula. 

Wj, wj = Vertical displacement of the points in the j^h 

layer and its Hankel transform. 

Ux, Vy, Wg = Displacements in the x, y and z directions. 
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= Column matrix (Aj, Bj, Cj, Dj). 

(x, y, z) = Rectangular co-ordinates, 

3 - Proportionality constant, "between shear stress and 

relative displacement at the interface, 

e X, G y, G 2 = Strain components in the x, y, and z directions. 

0 = Angle between r and x directions. 

(Gy,, G 0, e ) = Strain components in the radial, circumferen

tial and vertical directions. 

Yxy, Yyz, Ygx = Shear strains in the rectangular co-ordinates. 

Yrz, YrG, Y8z = Shear strains in the cylindrical co-ordinates. 

A = Gp + eg + 

r= + T0 + CTg = ̂ n + ̂ y + '^z 

\, u - Lame's constants. 

V - Poisson's ratio. 

§ Variable of integration introduced by Hankel transforma

tion in the equations of stresses and strains. 

^x, cTy, ^2 - Normal stresses in the x, y, z directions due 

to external loads. 

CT^, (7^, OQ - Vertical, radial and circumferential stresses 

due to the weight of the material. 

CTg, ^r> 7Q = Vertical radial and circumferential stresses 

due to external loads. 

(cr)j, (cgjj, (^z)j = Radial, circumferential and vertical 

components of stress in the layer. 

= Hankel transforms of the radial, 

circumferential and vertical components 

of stress of points in the jth layer. 
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Ill 

^x» G g = Stress components in the x, y, z directions, 

(Tygij, (Tygjj = Shear stress for the points in the jth 

layer and its transform respectively. 

(Tr0, TQg, Tj,2 = The shear stress on planes perpendicular 

to 2, r and 0, 

(Try, Tyg, = The shear stress on planes perpendicular 

to z, X, y directions 

? g2 ^2 
t7 = Laplace operator (—^ ^ ^) 

o x  d y  ÔZ 
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